Covering relations, cone conditions and the stable manifold theorem
نویسندگان
چکیده
منابع مشابه
Cone Conditions and Covering Relations for Topologically Normally Hyperbolic Invariant Manifolds
We present a topological proof of the existence of invariant manifolds for maps with normally hyperbolic-like properties. The proof is conducted in the phase space of the system. In our approach we do not require that the map is a perturbation of some other map for which we already have an invariant manifold. We provide conditions which imply the existence of the manifold within an investigated...
متن کاملThe stable manifold theorem for non-linear stochastic systems with memory II. The local stable manifold theorem
We state and prove a Local Stable Manifold Theorem (Theorem 4.1) for non-linear stochastic differential systems with finite memory (viz. stochastic functional differential equations (sfde’s)). We introduce the notion of hyperbolicity for stationary trajectories of sfde’s. We then establish the existence of smooth stable and unstable manifolds in a neighborhood of a hyperbolic stationary traject...
متن کاملThe Stable Manifold Theorem for Stochastic Differential Equations
We formulate and prove a local stable manifold theorem for stochastic differential equations (SDEs) that are driven by spatial Kunita-type semimartingales with stationary ergodic increments. Both Stratonovich and Itôtype equations are treated. Starting with the existence of a stochastic flow for a SDE, we introduce the notion of a hyperbolic stationary trajectory. We prove the existence of inva...
متن کاملThe starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings
The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.
متن کاملThe Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations∗
The main objective of this paper is to characterize the pathwise local structure of solutions of semilinear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. Such characterization is realized through the long-term behavior of the solution field near stationary points. The analysis falls in two parts 1, 2. In Part 1, we prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2009
ISSN: 0022-0396
DOI: 10.1016/j.jde.2008.12.019